

Geometrically-Correct 3D OCT: A Novel Imaging Method for the Identification of High-Risk Coronary Plaque

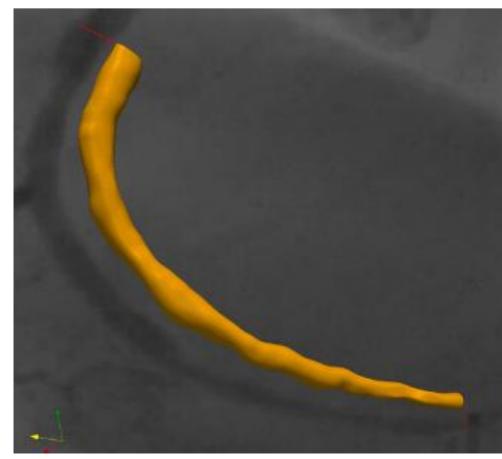
A. Giannopoulos¹, K. Toutouzas², M. Riga², AP. Antoniadis¹, C. Doulaverakis³, I. Tsampoulatidis³, I. Kompatsiaris³, YS. Chatzizisis¹, C. Stefanadis², GD. Giannoglou¹

¹ Cardiovascular Engineering and Atherosclerosis Lab, 1st Cardiology Department, Aristotle University of Thessaloniki, Greece
 ² First Department of Cardiology, Hippokration Hospital, University of Athens, Greece
 ³ Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece

Background

- Animal studies have shown that low endothelial shear stress (ESS) leads to high-risk plaque development
- The association of low ESS with high risk plaque characteristics has not been investigated in man

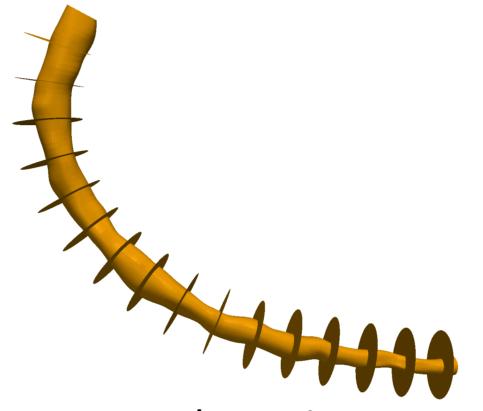
Purpose


We applied a **new integrated imaging** and **functional** assessment of the human coronary arteries to test the hypothesis that **low ESS** is associated with **increased lipid core** and **thin fibrous cap**

Methods

Study Population

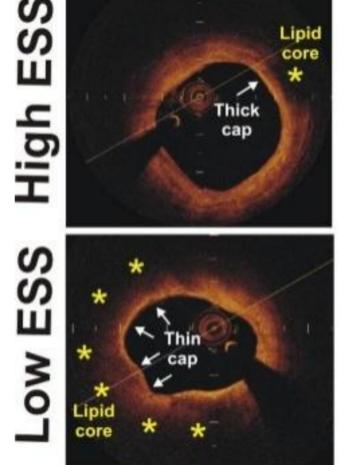
Five culprit coronary arteries from 5 acute coronary syndrome patients were 3D reconstructed with geometrically-correct 3D OCT


3D OCT Reconstruction

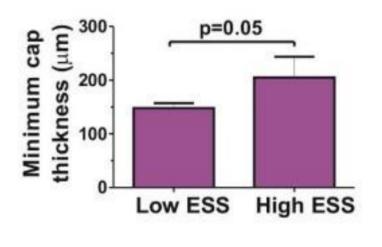
3D OCT reconstructed RCA

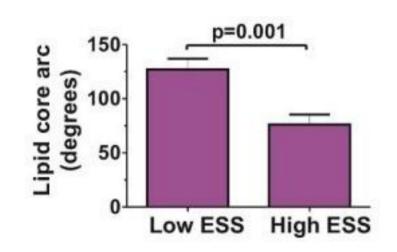
ESS Calculation ESS (Pa) 5.7 ESS calculation on 3D OCT reconstructed arteries using CFD

Subsegments of Interest



The reconstructed arteries were divided into 3-mm long subsegments


Parameters Measured


- 51 subsegments were classified into low ESS (≤1.4 Pa) and high ESS (>1.4 Pa) categories
- A representative OCT cross-section was identified in each subsegment
- Minimum fibrous cap thickness and lipid core arc were measured in each OCT section

Results

Low ESS subsegments had larger lipid core and thinner fibrous cap as compared with high ESS subsegments

Conclusions

- High-risk plaques with increased lipid core and thin fibrous cap develop in coronary regions with low ESS
- Calculation of local ESS in combination with fibrous cap thickness and lipid content derived from OCT may facilitate the early identification and prompt treatment of high-risk plaques